
Smashing the Heap under Win2k

Blackhat Briefings Windows 2002

Halvar Flake
Reverse Engineer

Blackhat Consulting

Third Generation Exploitation

Overview (I)
• Introduction

– First Generation Exploits
– Second Generation Exploits
– Third Generation Exploits

• Heap Structure Exploitation
– Generalities
– Win2k Heap Manager
– Borland C++ libc
– Demonstration
– The future of Exploitation

Third Generation Exploits

Overview (II)
• Format String Bugs

– History
– Automated Detection
– Exploitation

• Exploitation reliability
– Problem definition
– Unhandled Exception Filter Attack
– Thread Environment Structure Overwrite
– Free time for questions, answers and discussions

Third Generation Exploits

First Generation Exploits (I)
Introduction

local
variables

of a
Function

Frame Pointer
Return Address

Starts writing bytes into
a local stack buffer

Data supplied
by the attacker

Return address is
supplied by the attackerReturn Address

First Generation Exploits

• Simple stack smashes
• Documented ad nauseam
• EIP completely taken

– Hardware-specific feature (e.g. RET instruction)
• strcpy(), gets(), sprintf() …
• Trivial to exploit
• Can be detected via stress-testing
• Bug Species almost extinct

Introduction

Second generation exploits
• Cast screw-ups, off-by-one’s
• strncat(), strncpy(), manual pointer handling, …
• Fairly well documented
• EIP not overwritten, EBP manipulated

– Compiler functionality (e.g. standard function
prologue/epilogue for C compilers)

• Can be quite hard to detect, but can be detected via
stress testing

• Takes control of execution after a small detour
• Due to the hard-to-find nature, a few of these are still

around

Introduction

Off-by-one-exploitation (I)

Buffer to which
we append

saved_EBP

saved_EIP

saved_EBP‘s lowest byte is set to 0x00

Function epilogue: mov esp, ebp

Introduction

Off-by-one-exploitation (II)
Introduction

saved_EBP

saved_EIP

Function epilogue: pop ebp

Off-by-one-exploitation (III)
Introduction

saved_EIP Function epilogue: ret

The value in EBP (the frame pointer) is now
our modified value !

Off-by-one-exploitation (IV)
Introduction

User-supplied
data

saved_EBP

saved_EIP

Next function epilogue:mov esp, ebp
 ESP slides upwards (as its lowest order byte was
overwritten) into the user-supplied data. We can
now supply a new return address to gain control

ESP should be here ...

.. but it lands here ...

Third Generation: Format Strings
• New bug class surfaced in Summer 2000
• *printf() - family functions
• Trivial to spot
• Fairly well-documented and widely exploited
• Allows reading from & writing to arbitrary addresses
• No CPU registers overwritten

– Specific libc-functionality which is documented in
the ANSI/ISO C specification

• Simple to exploit, powerful, easy to find ! hunted to
extinction within a very short time

Introduction

Third Generation:  
Heap Structure Exploits

• Publically documented by Solar Designer
• Takes advantage of libc-specific implementations for

malloc()/free()
– More abstract than Generation I/II, less

standardized than format string bugs
• Allows writing of arbitrary data to arbitrary addresses
• Documented in Phrack 57 / Undocumented for NT
• Hard/impossible to detect via stress testing
• Similarly hard to spot as Generation II

Introduction

Generalities on Heap Management
• Every libc/compiler has different algorithms,

philosophies & internal structures for heap
management (Vranhalia lists at least 8 different Kernel
Memory allocators under *NIX)

• Customized optimization of heap management gives
huge performance leaps for applications, thus many
large-scale applications have their own heap
management algorithms

• Operating systems (such as WinNT2kXP) may
provide their own heap management algorithms which
the application might use

Heap Structure Exploit Generalities

Win32 heap management model
Heap Structure Exploit Generalities

Physical Memory
Kernel-level Virtual Memory ManagerKernel

Mode

Virtual Memory API

NT Heap
Memory

API

Libc Heap
Management

API

Application Code

Customized
Heap

implementation

User
Mode

Win2k Heap Manager (I)
Heap Structure Exploits

LocalAlloc()

HeapAlloc()

GlobalAlloc()

RtlAllocateHeap()

Kernel32.DLL NTDLL.DLL

RtlAllocateHeap (I)
RtlAllocate

HeapSlowly()

Allocate from
Lookaside Table

Check Flags
and smaller than 1024

Return block…
New allocation
from the heap

RtlAllocateHeap (II)

New allocation
from the heap

Size
check

Smaller than
1024 Bytes

Larger than
1024 BytesLarge-Heap

Allocator
Small-Heap

Allocator

Win2k Heap Manager (II)
Heap Structure Exploits

After two allocations of 32 bytes each our heap memory
should look like this:

+0

+32

+64

Block A
control data

Block B
control data

Memory Block A

Memory Block B

Uninteresting memory

Win2k Heap Manager (III)
Heap Structure Exploits

Now we assume that we can overflow the first buffer
so that we overwrite the Block B control data.

+0

+32

+64

Block A
control data

Block B
control data

Memory Block A

Memory Block B

Uninteresting memory

Win2k Heap Manager (IV)
Heap Structure Exploits

When Block B is being freed, an attacker has supplied the
entire control block for it. Here is the rough layout:

+0

+4

Size of the previous
Block divided by 8

8 bit for
FlagsField_4

Size of this Block
divided by 8

If we analyze the disassembly of _RtlHeapFree() in NTDLL,
we can see that our supplied block needs to have a few
properties in order to allow us to do anything evil.

Win2k Heap Manager (V)
Properties our block must have:

• Bit 0 of Flags must be set
• Bit 3 of Flags must be set
• Field_4 must be smaller than 0x40
• The first field (own size) must be larger than 0x80

The block ‘XXXX99XX’ meets all requirements.
We reach the following code now:

Heap Structure Exploits

Win2k Heap Manager (VI)
add esi, -24

Heap Structure Exploits

+0

+32

+64

Block A
control data

Block B
control data

Memory Block A

Memory Block B

Uninteresting memory

ESI points here …now here …

Win2k Heap Manager (VII)
mov eax,[esi]
mov esi, [esi+4]

Heap Structure Exploit

+0

+32

+64

Block A
control data

Block B
control data

Memory Block A

Memory Block B

Uninteresting memory

eax esi

Win2k Heap Manager (VIII)

mov [esi], eax ; Arbitrary memory overwrite

Heap Structure Exploits

+0

+32

+64

Block A
control data

Block B
control data

Memory Block A

Memory Block B

Uninteresting memory

eax esi

Win2k Heap Manager (IX)

• If we can overwrite a complete control block (or at
least 6 bytes of it) and have control over the data 24
bytes before that, we can easily write any value to
any memory location.

• It should be noted that other ways of exploiting exist
for smaller/different overruns – use your
Disassembler and your imagination.

Heap Structure Exploits

Borland C++ run-time library (I)
Heap Structure Exploits

We have the same situation as before, but control blocks
are 4 bytes in length only:

+0

+32

+64

A
data

B
data

Memory Block A

Memory Block B

Uninteresting memory

Borland C++ run-time library (II)
Heap Structure Exploits

The control structure is only one DWORD large.

+0

+32

+64

A
data

B
data

Memory Block A

Memory Block B

Uninteresting memory

Borland C++ run-time library (III)
Heap Structure Exploits

• Control structure contains the size of the next
 allocated block
• Libc checks: Is block smaller than
 0x00100000 (ca. 1MB)

➢ If larger, page deallocator is called
➢ If smaller, small_free() – function is called

• The dangerous code is in small_free()

We cannot overwrite the control block completely if we want
to do anything useful.

Borland C++ off-by-one exploitation (I)
Assuming we overwrite the lowest byte of the control
block of a 32-byte byte buffer which we control (which
is not the one we overrun):

Heap Structure Exploits

Buffer which we overrun

Adjancent Buffer which we control

+0

+32

+64 Some more memory…

Control Blocks
(size | FLAGS)

Borland C++ off-by-one exploitation (II)
Instead of 0x20 OR’ed with the FLAGS, we get 0x00
due to the off-by-one NULL-byte.

Heap Structure Exploits

Buffer which we overrun

Adjancent Buffer which we control

+0

+32

+64 Some more memory…

Gets overwritten with 0x00

Borland C++ off-by-one exploitation (III)
The libc tries to determine if the next buffer is a free buffer
(to coalesce the two if so) – it attempts to skip the next block
of memory by adding the value of the control structure. We
modified this value, so it now points into the buffer we control.

Heap Structure Exploits

Buffer which we overrun

Adjancent Buffer which we control

+0

+32

+64 Some more memory…

Should point
 here …

…but points
here !

Borland C++ off-by-one exploitation (IV)
If we have bit 0 of the first byte of our trailing buffer
set, the libc tries to coalesce the two “free” buffers
using the code:

Heap Structure Exploits

Buffer which we overrun

Adjancent Buffer which we control

+0

+32

+64 Some more memory…

EDX
mov ebx, [edx+8]
mov ecx, [edx+4]
mov [ecx+8], ebx ; arbitrary memory overwrite

Summary (I)
The only constant is change – especially in the world of bugs:

– Stack-based overflows are slowly “being hunted to near
extinction”

– Biological Analogies can be seen: A particularly valuable
and easy-to-hunt animal/bug has been hunted to near
extinction (format string bugs)

– Some bug-hunters see bugs as a natural resource which
is slowly being depleted – thus the ‘save the bugs
movements’ and more push in the underground to keep
bugs secret

Heap Structure Exploits

Summary (II)
New environments, new bugs…

– Majority of new code is C++/OOP/STL
– Pitfalls are not yet known – off-by-ones are possible, if not

in strings, with other STL constructs
– New bugs are mostly heap overruns
– Due to their elusive nature, stress testing becomes

useless: Goodbye Fuzz, Retina©, and 2 gazillion Perl-
Scripts

– Reverse Engineers are at an advantage: They can
document the inner workings of their compiler themselves

– Are you sure your JAVA runtime is working 100%ly
correctly ?

Heap Structure Exploits

Summary (III)
Future of exploitation: Application Logic Corruption

– Traditional countermeasures attempt to prevent the
execution of malicious code (StackGuard©, PaX)

– Non-executable data pages is a standard feature of new
CPU architectures – goodbye shellcode

– New bug generation allows writing of arbitrary values to
arbitrary addresses

– The attacker of the future will subvert the logic of the
application by modifying it’s variables – e.g. setting the bool
IsAuthenticated == TRUE.

– Again, Reverse Engineers are useful – exploitation of
closed-source applications without them is going to be hard
to impossible

Heap Structure Exploits

Break
Any questions ?

Heap Structure Exploits

Exploitation Reliability (I)
Exploitation of buffer overruns under modern OS’s
faces a bunch of difficulties:

– Variations in shared libraries & installs create incertainity
concerning the right return address

– Multi-threading instead of forks create incertainity
concerning the address of the stack

– Shooting down a web-server is not very stealthy
– Under NT (not 2k), services are not automatically restarted

! one try and you’re out

Methods are needed which improve reliability of
exploitation !

Reliability

Format String Bugs (I)
Stack layout during regular printf()-call:

printf(“%lx---%s----%d”, v1, puf, var2);

Reliability

arbitrary local data

Return address Pointer to the format string

Format String Bugs (II)
Stack layout during malicious printf()-call :

 printf(stuff); // Stuff is set to contain
 // “%.200lx%n%.40lx%n“

Reliability

attacker-supplied malicious data

Return address Pointer to the format string

Exploitation Reliability (II)
Windows NT/2k/ME provides a powerful feature which can be
abused to increase reliability of exploitation:

Structured Exception Handling (SEH)

As with all powerful features, this can be abused in various ways
– Two of them are:

1) Unhandled Exception Filter Attacks (UEFA)
2) Thread Exception Structure Overwrites (TESO)

Various other ways exists – where do you want to go today ?

Reliability

Exploitation Reliability (III)
Structured Exception Handling (SEH) allows an application to

handle exceptions on it’s own, similar to signal handlers
under most UNIX variants.

Two of the key types of exception handlers are:

1) Final Exception Handlers installed through a function called
SetUnhandledExceptionFilter()

2) Per-thread exception handlers installed by modifying a
structure at fs:[0] and creating handler structures on the
stack

Reliability

Exploitation Reliability (IV)
SetUnhandledExceptionFilter() installs a handler which

will be called once all other handlers have failed,
e.g. in a GPF or Page Fault (==UNIX SIG_SEGV)

A disassembly of the relevant function in
KERNEL32.DLL looks like this:

 mov ecx, [esp+lpTopLevelExceptionFilter]
 mov eax, dword_77EE044C
 mov dword_77EE044C, ecx
 retn 4

Reliability

Exploitation Reliability (V)
Reliability

• Overwrite pointer at 0x7FEE044C with a pointer to our
shellcode

• Trigger an exception ! We seize control of the
exception-handling thread

• Drawback: We need to know exact KERNEL32.DLL
version, language (under NT) and loading address

• Advantage: We just need to write one DWORD and
then trigger an exception

Exploitation Reliability (VI)

A thread creates/installs a per-thread exception handler
like this:

 push offset handler
 push dword fs:[0]
 mov fs:[0], esp
and creates a structure on the stack which looks like this:

Reliability

Pointer to next structure

Pointer to handler code

+0

+4

Exploitation Reliability (VII)

• fs:[0] forms a linked list of these structures
• The topmost handler gets called upon exception
• If it cannot handle the exception, control is passed

down to the next handler
• Repeat the above until no more exception handlers are

left

• If we can overwrite the value at fs:[0] we can gain
control !

Reliability

Exploitation Reliability (VIII)

• Cross-segment writing is impossible with string bugs
and heap overwrites

• The structure starting at fs:[0] is called Thread
Environment Block and is documented in both the NT
DDK header files and by the Wine project

• Undocumented: The TEB’s are created at highly
predictable addresses

• By predicting these addresses and writing to the
Thread Environment Block, we can hijack exception
handlers

Reliability

Exploitation Reliability (IX)
Example of TEB allocation (identical on any NT2kXP):

Reliability

1st Thread TEB: 0x7FFDE000
2nd Thread TEB: 0x7FFDD000
3rd Thread TEB: 0x7FFDE000

………………….
11th Thread TEB: 0x7FFD4000

12th Thread TEB: 0x7FFAF000
12+N-th Thread: 0x7FFAF000-N*0x1000

Exploitation Reliability (X)
Example of TEB fragmentation:

Reliability

Thread 1 is created
Thread 2 is created

Thread 3 is created
Thread 4 is created

Thread 2 finishes & exits -- NONPAGED

Exploitation Reliability (XI)
Example of TEB fragmentation:

Reliability

Thread 1 is created
Thread 5 fills gap

Thread 3 is created
Thread 4 is created
Thread 6 is created
Thread 7 is created
Thread 8 is created
Thread 9 is created

Thread 10 is created

Exploitation Reliability (XII)
Example of TEB fragmentation:

Reliability

Thread 1 is created
Thread 5 fills gap

Thread 3 is created
Thread 4 is created
Thread 6 is created

Thread 7 is created
Thread 8 is created
Thread 9 is created

Thread 10 is created

Thread 1 finishes & exits -- NONPAGED

Thread 4 finishes & exits -- NONPAGED
Thread 6 finishes & exits -- NONPAGED

Thread 9 finishes & exits -- NONPAGED

Exploitation Reliability (XIII)
We’re facing some difficulties:

• We do not know which thread we’re working with
• Thus we do not know where ‘our’ TEB is at
• The TEB-memory is fragmented due to constant

dying/creating of threads in a production environment
• Thus we cannot overwrite them sequentually as odds

are that we hit a page-fault before we get to our TEB

Reliability

Exploitation Reliability (XIV)
Strategy for exploitation:

– Create large number of threads
– Let lots of them die
– Create our exploiting thread
– Create a large number of additional threads to fill

gaps
– Start overwriting TEBs sequentually

Results: 80-90% reliability independent of NT2kXP
version, service pack or hotfix

Reliability

Any Questions ?
Reliability

