
Windows Heap Overflows

David Litchfield <david@ngssoftware.com>

Windows Heap Overflows

Introduction

This presentation will examine how to exploit
heap based buffer overflows on the Windows
platform. Heap overflows have been well
documented on *nix platforms, for example
Matt Connover’s paper – w00w00 on heap
overflows, but they’ve not been well
documented on Windows, though Halvar Flake’s
Third Generation Exploits paper covered the key
concepts.

Windows Heap Overflows

Heap based buffers are safe…. ?????

Most developers are aware of the dangers of
stack based buffer overflows but too many
still believe that if a heap based buffer is
overflowed it’s not too much of a problem.

One paper on secure coding suggested that to
solve the problem of stack based overflows
was to move the buffer to the heap!

Windows Heap Overflows

What is a heap?

The heap is an area of memory used for storage
of dynamic data. Every process has a default
process heap but a developer can create their
own private heaps. Space is allocated from
the heap and freed when finished with.

Windows Heap Overflows

Heap functions

Windows Heap Overflows

Heap Design

Each heap starts with a structure. This
structure, amongst other data, contains an
array of 128 LIST_ENTRY structures. Each
LIST_ENTRY structure contains two pointers –
see winnt.h. This array can be found at 0x178
bytes into the heap structure – call it the
FreeList array.

Windows Heap Overflows

Heap Design

When a heap is first created there are two
pointers that point to the first free block set in
FreeList[0]. Assuming the heap base address
is 0x00350000 then first available block can
be found at 0x00350688.

Windows Heap Overflows

Heap Design

0x00350178 (FreeList[0].Flink) = 0x00350688 (First Free Block)
0x0035017C (FreeList[0].Blink) = 0x00350688 (First Free Block)

0x00350688 (First Free Block) = 0x00350178 (FreeList[0])
0x0035068C (First Free Block+4) = 0x00350178 (FreeList[0])

When an allocation occurs these pointers are updated accordingly.
As more allocations and frees occur these pointers are
continually updated and in this fashion allocated blocks are
tracked in a doubly linked list.

Windows Heap Overflows

So where’s the problem?

When a heap based buffer is overflowed the
control information is overwritten so when the
buffer (allocated block) is freed and it comes
to updating the pointers in the FreeList array
there’s going to be an access violation.

Windows Heap Overflows

So where’s the problem?

Example: See code listing A – heap.c

Windows Heap Overflows

So where’s the problem?

Access violation

77F6256F mov dword ptr [ecx],eax
77F62571 mov dword ptr [eax+4],ecx

EAX = 0x42424242
ECX = 0x42424242

If we own both EAX and ECX we have an arbitrary DWORD overwrite. We can
overwrite the data at any 32bit address with a 32bit value of our choosing.

Windows Heap Overflows

Exploiting Heap Overflows

Repairing the Heap
Unhandled Exception Filter
PEB function Pointer
Vectored Exception Handling
Thread Environment Block

Windows Heap Overflows

Repairing the heap

After the overflow the heap is corrupt so you’ll
need to repair the heap.

Many of the Windows API calls use the default
process heap and if this is corrupt the exploit
will access violate.

Windows Heap Overflows

Repairing the heap

Could repair on a per vulnerability/exploit basis.
Time consuming and could run into problems.

Need a generic way to repair the heap which is
effective for all exploits. Write it once and
reuse it.

Windows Heap Overflows

Repairing the heap

The best method for repairing the heap is to
reset the heap making it “appear” as if it is a
fresh new heap. This will keep other heap
data intact but allow fresh allocations.

Windows Heap Overflows

Repairing the heap

We reset our overflow heap control structure
with heap.TotalFreeSize and set the flags to
0x14 then set heap.FreeLists[0].Flink and
heap.FreeLists[0].Blink to the start of the fake
control structure.

See code listing B – asm-repair-heap.

Windows Heap Overflows

Exploit: Using the Unhandled Exception Filter

The Unhandled Exception Filter method is the
most common method used. The UEF is the
“last ditch effort” exception handler.

Windows Heap Overflows

Exploit: Using the Unhandled Exception Filter

Location varies from OS to OS and SP to SP.
Disassemble the SetUnhandledExceptionFilter
function.

 77E7E5A1 mov ecx,dword ptr [esp+4]
 77E7E5A5 mov eax,[77ED73B4]
 77E7E5AA mov dword ptr ds:[77ED73B4h],ecx
 77E7E5B0 ret 4

UEF = 0x77ED73B4

Windows Heap Overflows

Exploit: Using the Unhandled Exception Filter

When an unhandled exception occurs the
following block of code is executed:

77E93114 mov eax,[77ED73B4]
77E93119 cmp eax,esi
77E9311B je 77E93132
77E9311D push edi ***
77E9311E call eax

Windows Heap Overflows

Exploit: Using the Unhandled Exception Filter

Essence of the method is to set our own
Unhandled Exception Filter.

EDI was pushed onto the stack. 0x78 bytes past
EDI is a pointer to the end of the buffer – just
before the heap management control stuff.

Windows Heap Overflows

Exploit: Using the Unhandled Exception Filter

Set the UEF to an address that points to a

CALL DWORD PTR [EDI + 0x78]

Many can be found in netapi32.dll, user32.dll,
rpcrt4.dll for example.

Windows Heap Overflows

Exploit: Using the Unhandled Exception Filter

Notes: Other OSes may not use EDI. Windows
2000 for example has a pointer at ESI+0x4C
and EBP+0x74.

Using this method you need to know the target
system – i.e. what OS and what SP level.

Windows Heap Overflows

Exploit: Using the Unhandled Exception Filter

Example: See code listing C – heap-uef.c and
code listing D - exploit-uef.c

Windows Heap Overflows

Exploit: Using Vectored Exception Handling

Vectored Exception Handling is new as of
Windows XP.

Unlike traditional frame based exception
handling where EXCEPTION_REGISTRATION
structures are stored on the stack information
about VEH is stored on the heap.

Windows Heap Overflows

Exploit: Using Vectored Exception Handling

A pointer to the first Vectored Exception Handler
is stored at 0x77FC3210. Points to a
_VECTORED_EXCEPTION_NODE.

Windows Heap Overflows

Exploit: Using Vectored Exception Handling

struct _VECTORED_EXCEPTION_NODE
{
 DWORD m_pNextNode;
 DWORD m_pPreviousNode;
 PVOID m_pfnVectoredHandler;
}

Windows Heap Overflows

Exploit: Using Vectored Exception Handling

Vectored handlers are called before any frame
based handlers! Technique involves
overwriting the pointer to the first
_VECTORED_EXCEPTION_NODE @
0x77FC3210 with a pointer to a fake VE node.

Windows Heap Overflows

Exploit: Using Vectored Exception Handling

77F7F49E mov esi,dword ptr ds:[77FC3210h]
77F7F4A4 jmp 77F7F4B4
77F7F4A6 lea eax,[ebp-8]
77F7F4A9 push eax
77F7F4AA call dword ptr [esi+8]
77F7F4AD cmp eax,0FFh
77F7F4B0 je 77F7F4CC
77F7F4B2 mov esi,dword ptr [esi]
77F7F4B4 cmp esi,edi
77F7F4B6 jne 77F7F4A6

The code behind calling the vectored exception handler.

Windows Heap Overflows

Exploit: Using Vectored Exception Handling

Need to find a pointer on the stack to our
buffer. Assume it can be found at
0x0012FF50. This becomes our
m_pfnVectoredHandler making the address of
our pseudo
_VECTORED_EXCEPTION_NODE
0x0012FF48.

Windows Heap Overflows

Exploit: Using Vectored Exception Handling

Remember on the free we get an arbitrary
DWORD overwrite:

 77F6256F mov dword ptr [ecx],eax
 77F62571 mov dword ptr [eax+4],ecx

We set EAX to 0x77FC320C and ECX to
0x0012FF48.

Windows Heap Overflows

Exploit: Using Vectored Exception Handling

0x77FC320C is moved into 0x0012FF48 then
0x0012FF48 is moved into 0x77FC3210 – thus
our pointer is set. When an exception occurs
0x0012FF48 (our pseudo VEN) is moved into
ESI and DWORD PTR[ESI+8] is called. ESI+8
is a pointer to our buffer.

Windows Heap Overflows

Exploit: Using Vectored Exception Handling

Notes: If the location of the stack (and thus the
pointer to the buffer) moves this method can
be unreliable.

Example: See code listing E – heap-vector.c and
F – exploit-vector.c

Windows Heap Overflows

Exploit: RtlEnterCriticalSection pointer in the PEB

Each process contains a structure known as the
PROCESS ENVIRONMENT BLOCK or PEB. The
PEB can be referenced from the Thread
Information/Environment Block TIB/TEB. FS:
[0] points to the TEB.

 mov eax, dword ptr fs:[0x30]
 mov eax, dword ptr fs:[eax+0x18]

Windows Heap Overflows

Exploit: RtlEnterCriticalSection pointer in the PEB

As well as containing other process specific data
the PEB contains some pointers to
RtlEnterCriticalSection and
RtlLeaveCriticalSection. These pointers are
referenced from RtlAccquirePebLock and
RtlReleasePebLock. RtlAccquirePebLock is
called from ExitProcess for example.

Windows Heap Overflows

Exploit: RtlEnterCriticalSection pointer in the PEB

The location of the PEB is stable across
Windows NT 4 / 2000 / XP and thus the
pointer to RtlEnterCriticalSection can be found
at 0x7FFDF020. Whilst the PEB can be found
at the same address in Windows 2003 the
function pointers are no longer present so this
method won’t work with 2003.

Windows Heap Overflows

Exploit: RtlEnterCriticalSection pointer in the PEB

The method simply involves overwriting the
pointer to RtlEnterCriticalSection in the PEB
with the address of an instruction that will
return to the buffer.

Example: See code listing G – heap-peb.c and H
– exploit-peb.c

Windows Heap Overflows

Exploit: TEB Exception Handler Pointer

Each Thread Environment Block contains a
pointer to the first frame based exception
handler. The first thread’s TEB has a base
address of 0x7FFDE000 and each new
thread’s TEB is assigned an address growing
towards 0x00000000. If a thread exits and a
new thread is created then it will get the
address of the previous thread’s TEB.

Windows Heap Overflows

Exploit: TEB Exception Handler Pointer

This can lead to a “messy” TEB table and can
make this method uncertain.

However, if the address of the vulnerable
thread’s TEB is stable then this method can
be used quite effectively.

Windows Heap Overflows

Exploit: TEB Exception Handler Pointer

The method involves overwriting the pointer to
the first exception handler in the TEB with an
address that points to an instruction that will
get path of execution back to the buffer.

Windows Heap Overflows

Exploit: Getting Creative!

There are other ways to exploit heap based
buffer overflows to execute arbitrary code to
defeat mechanisms such as marking the heap
as non-executable.

Windows Heap Overflows

Exploit: Getting Creative!

Assume we have a process with the heap
marked as non-executable. This can be
defeated with pointer subversion.

An example of this can be found in the fault
reporting functionality of the
UnhandledExceptionFilter() function.

Windows Heap Overflows

Exploit: Getting Creative!

The fault reporting code calls
GetSystemDirectoryW() to which “faultrep.dll”
is concatenated. This library is the loaded and
the ReportFault() function is called.

Windows Heap Overflows

Exploit: Getting Creative!

GetSystemDirectoryW() references a pointer in
the .data section of kernel32.dll that points to
where the wide character string of the
Windows system directory can be found. This
pointer can be found at 0x77ED73BC. On
overflow we can set this pointer to our own
system directory.

Windows Heap Overflows

Exploit: Getting Creative!

Thus when GetSystemDirectoryW() is called the
“system” directory is a directory owned by the
attacker – this can even be a UNC path. The
attacker would create their own faultrep.dll
which exports a ReportFault() function and so
when the UnhandledExceptionFilter() function
is called arbitrary code can be executed.

Windows Heap Overflows

Exploit: Getting Creative!

Whilst code paths are finite I’d argue that the
possibilities of what can be done is limited
more by the imagination.

Windows Heap Overflows

Conclusion

Hopefully this presentation has demonstrated
the dangers of heap based buffer overflows
and that developers not treat them as benign.

Any questions?

Windows Heap Overflows

Thanks for coming!

Thanks for coming and enjoy the rest of the
conference!

